这里能搜索到更多你想要的范文→
当前位置:好范文网 > 实用范文 > 证明范本 >

哥德巴赫猜想证明者(精选多篇)

发布时间:2016-01-15 05:13:04 审核编辑:本站小编下载该Word文档收藏本文

第一篇:哥德巴赫猜想的证明

猜想1 每个不小于6的偶数都可以表示为两个奇素数之和

猜想2. 每个不小于9的奇数都可以表示为三个奇素数之和。

证明:

设:m为整数且≥3;a,a1,a2,a3,a4,a5,a6,a7,a8,a9,b1,b2,b3,b4,b5,b6,

b7,b8,b9,为整数且≥1

∵m为整数且≥3

∴2m为偶数且≥6

尾数为1且<121的和数为:21,51.,81,91,111 共5个

尾数为1且≥121的和数可表示为:

①(10a+1)*(10b+1),2m>121

②(10a1+3)*(10b1+7),2m>221

③(10a2+9)*(10b2+9),2m>361

尾数为3且<143的和数为:33,63,93,123,133 共5个

尾数为3且≥143的和数可表示为:

④(10a3+1)*(10b3+3),2m>143

⑤(10a4+7)*(10b4+9),2m>323

大于0且尾数为5的整数除了5,其余皆为和数

尾数为7且<187的和数为:27,,57,77,,87,117,147,177 共7个

尾数为7且≥187的和数可表示为:

⑥(10a5+1)*(10b5+7),2m>187

⑦(10a6+3)*(10b6+9),2m>247

尾数为9且<169的和数为:9,39,49,69,99,119,129,159 共8个

尾数为9且≥169的和数可表示为:

⑧(10a7+1)*(10b7+9),2m>209

⑨(10a8+3)*(10b8+3),2m>169

⑩(10a9+7)*(10b9+7),2m>289

∵a,a1,a2,a3,a4,a5,a6,a7,a8,a9,b1,b2,b3,b4,b5,b6,b7,b8,b9,为整数且≥1

令代数式①,②,③,……,⑩分别小于2m

则 ab,a1b1,a2b2,……,a9b9分别可以表示:当代数式①,②,③,……,⑩分别<2m 时,代数式①,②,③,……,⑩可以表示的数的个数

又∵大于等于3且小于2m的奇数可以求出为 m-1个 ∴ab可表示代数式①所能表示的数的个数与大于于3且小于2m的奇数的个数的m?1

(10a+1)*(10b+1)<2mab<2m?10a?10b?1100

ab2m?10a?10b?1<m?1100(m?1)

∵12m?10a?10b?1存在极大值 50100(m?1)

∴ab1的极大值为 m?150

m?1个 50∴大于等于3且小于2m的奇数中,代数式①能表示的数最多为

同理可求得,大于等于3且小于2m的奇数中,代数式①,②,③,……,⑩能表示的数最多都为m?1个 50

∴大于等于3且小于2m的奇数中,尾数为1的和数最多为3(m?1)+5个 50

2(m?1)大于等于3且小于2m的奇数中,尾数为3的和数最多为+5个 50

m?1大于等于3且小于2m的奇数中,尾数为5的和数最多为-1个 5

2(m?1)大于等于3且小于2m的奇数中,尾数为7的和数最多为+7个 50

3(m?1)大于等于3且小于2m的奇数中,尾数为9的和数最多为+8个 50

设p1,p2为正奇数

则 当m为奇数时满足p1+p2=2m的p1,p2共有

∵当2m≥502时 [m?1-1组 2m?13(m?1)2(m?1)m?12(m?1)-1]-[+5]-[ +5]-[ -1]-[ +7] 25050550

3(m?1)-[ +8] 的极小值≥1 50

即,当2m≥502且m为奇数时至少有1 组p1,p2使猜想1成立

∴当2m≥502且m为奇数时猜想1成立

当m为偶数时满足p1+p2=2m的p1,p2共有

∵当2m≥512时 [m-1组 2m3(m?1)2(m?1)m?12(m?1)-1]-[+5]-[ +5]-[ -1]-[ +7] 25050550

3(m?1)-[ +8] 的极小值≥1 50

即,当2m≥512且m为奇数时至少有1 组p1,p2使猜想1成立

∴当2m≥512且m为偶数时猜想1成立

∴当2m≥512时 猜想1成立

当2m≤512时,利用穷举法,证得,猜想1成立

∴综上所述,猜想1成立

∵大于等于9的偶数可以表示为 3+大于等于6的偶数

又∵猜想1成立

∴猜想2成立

通过总结证明过程可以得出:质数的个数与和数个数的比值无限接近1:9

第二篇:我对哥德巴赫猜想的证明

我对哥德巴赫猜想的证明

哥德巴赫猜想:每个大于等于6的偶数,都可表示为两个奇素数之和。

证明: 构造集合 v = {x | x 为素数 } , 即 对于任意素数 x ∈ v现构造大数 k 为集合 v 所有元素的乘积,

k=∏x ( x ∈ v) = 2*3*5*7*11*13......*m*......*n即k为所有素数的乘积,由上式明显可知,k为大于6的偶数。按照哥德巴赫猜想,可表示为 k = l + g

现假定 l 是素数,可得

g = k - l = l * (k/l -1)

然 对于任何一个素数 l 均为 k 的一个因子,

∴ 其中 k/l 为 正整数, 且有k 的构造明显可知 k/l大于2 ,∴ (k/l -1)为 大于等于 2的正整数,又∵ l 为一个素数,∴ g 不等于 k/l -1。

∵g 除了1 和 自身 外 至少还有 l 和 k/l -1 两个因子, ∴g 不是素数。

∵ 对于任何奇素数 l ,g = k - l 都不是素数

∴ k 不能被表示为两个奇素数之和的形式

∴ 可知 哥德巴赫猜想 不成立。

证明完毕。

第三篇:哥德巴赫猜想证明方法

哥德巴赫猜想的证明方法

探索者:王志成

人们不是说:证明哥德巴赫猜想,必须证明“充分大”的偶数有“1+1”的素数对,才能说明哥德巴赫猜想成立吗?今天,我们就来谈如何寻找“充分大”的偶数素数对的方法。

“充分大”的偶数指10的500次方,即500位数以上的偶数。因为,我没有学过电脑,也不知道大数的电脑计算方法,所以,我只有将“充分大”的偶数素数对的寻找方法告诉大家,请电脑高手帮助进行实施。又因为,人们已经能够寻找1000位数以上的素数,对于500位数以内的素数的寻找应该不是问题,所以,“充分大”的偶数应该难不住当今的学术界。

“充分大”的偶数虽然大,我认为:我们只须要寻找一个特定的等差数列后,再取该数列的1000项到2014项,在这2014个数之内必然能够寻找到组成偶数素数对的素数。下面,我们进行简单的探索,从中寻找到具体方法。

我们以偶数39366为例,进行探索,按照本人的定理:在偶数内,既不能被素因子整除,也不与偶数除以素因子的余数相同的数(自然数1除外),必然能够组成偶数的素数对。

这里所说的素因子,指小于偶数平方根的素数,√39366≈198,即小于198的素数为偶数39366的素因子。

一、初步探索,

1、素因子2,39366/2余0,当然,任何偶数除以2都余0,素数2把自然数分为:1+2n和2+2n,除以2余0的数和与偶数除以素因子2的余数相同的数都是2+2n数列中的数,剩余1+2n数列中的数为哥德巴赫数的形成线路;

2、素因子3,39366/3余0,素数3把1+2n数列分为:1+6n,3+6n,5+6n,除以3余0的数和与偶数除以素因子3的余数相同的数都是3+6n数列中的数,剩余1+6n,5+6n,两个数列中的数为哥德巴赫数的形成线路;

3、素因子5,39366/5余1,我们对上面剩余的两个数列任意取一个数列1+6n,取与素因子相同的项,5个项有:1,7,13,19,25。在这5个项中,必然有一个项除以5余0,必然有一个项除以素因子的余数与偶数除以素因子的余数相同,必然剩余素因子5减去2(不能被素因子整除的,为素因子减去1)个项,即5-2=3个项既不能被素因子整除,也不与偶数除以素因子的余数相同的数。剩余7,13,19,以前面的素因子乘积2*3*5为公差,组成3个哥德巴赫数的形成线路:7+30n,13+30n,19+30n。后面只取3个项,至少有一个项。

4、素因子7,39366/7余5,我们任意取7+30n的3个项有:7,37,67,这3个数中37,67,既不能被素因子整除,也不与偶数除以素因子的余数相同的数。即37+210n和67+210n两条线路都可以,

5、素因子11,39366/11余8,我们取37+210n的3个项:37,247,457,这3个数,既不能被素因子整除,也不与偶数除以素因子的余数相同的数。组成3个数列:37+2310n,247+2310n,457+2310n。

7、素因子13,39366/13余2,因为,下一个公差为2*3*5*7*11*13=30030,39366/30030≈1,不能组成与素因子13相同的13个项,寻找组成偶数的素数对的素数,在取最后一个公差的等差数列时,不能取与素因子相同项数时,最少必须取素因子1/2以上的项。我们取247+2310n数列在偶数1/2之内的数有:247,2557,4867,7177,9487,11797,14107,16417,18727。

从素因子13到197,虽然还有40个素因子进行删除,但是,大家不要怕,它们的删除率是相当低的,所以,在这些数中必然有能够组成偶数素数对的素数存在。

素因子13,删除能被13整除的数247,删除除以13与39366除以13余数相同的数14107; 素因子19,删除除以19与39366除以19余数相同的数11797;

素因子31,删除能被31整除的数4867;

素因子53,删除能被53整除的数9487,删除除以53与39366除以53余数相同的数16417;

素因子61,删除能被61整除的数18727。

最后,剩余2557和7177两个数,必然能组成偶数39366的素数对。

探索方法二、

1、寻找等差数列的公差,令偶数为m、公差为b,我们已知该题的公差为2310,2310=2*3*5*7*11,大于11的下一个素数为13,用13/2=6.5,那么,公差的要件为: m/b>6.5,即大于7个项,主要是既要取最大的公差,又要确保不低于下一个素因子的1/2个项。我们就选择2310为该偶数的公差。

2、寻找等差数列的首项,令首项为a,a的条件为:既不能被组成公差的素数2,3,5,7,11整除,也不与偶数除以2,3,5,7,11的余数相同,还必须在公差2310之内;

(1)、不能被2,3,5,7,11整除的数有:在2310之内,大于或等于13的素数;自然数1;由大于或等于13的素因子与大于或等于13的素因子所组成的合数。为了方便起见,我们在这里取大于或等于13的素因子。

(2)、a除以2,3,5,7,11的余数不与偶数39366除以2,3,5,7,11的余数相同。因39366-13=39353,39353分别除以2,3,5,7,11不能整除,故13除以2,3,5,7,11的余数不与偶数39366除以2,3,5,7,11的余数相同,可以定为首项,得该等差数列为13+2310n。

取等差数列13在m/2的项有:13,2323,4633,6943,9253,11563,13873,16183,18493。当然,你也可以取该数列在偶数内的所有项,但是,当你全盘计算该偶数素数对时,取所有项必然形成与对称数列的计算重复,该数列的对称数列:因2310-13=2297,13不能被2,3,5,7,11整除,除以2,3,5,7,11的余数不与偶数39366除以2,3,5,7,11的余数相同,那么,对称数2297也必然满足这些条件,2297+2310n同样是产生素数对的等差数列。

3、在上面的9上项中,去掉合数:2323,4633,6943,9253,11563,

4、再去掉除以后面40个素因子余数与偶数除以这40个素因子余数相同的数,也就是对称数是合数的数:13,13873,16183,剩余18493必然能够组成偶数39366的素数对。

简单地谈一下素数生成线路与哥德巴赫数的生成线路的区别:

1、素数生成线路,我们仍然以2310为公差,在2310之内不能被2,3,5,7,11整除的数有:2310*(1/2)*(2/3)*(4/5)*(6/7)*(10/11)=480个,我们可以用这480个数为首项,以2310为公差组成480个等差数列,为偶数39366内的素数生成线路。对于相邻的偶数39364和39368来说,素数的生成线路是一样的。

2、我们把能够组成偶数素数对的素数称为哥德巴赫数,偶数39366的哥德巴赫数生成

线路,以2310为公差,在2310之内,既不能被2,3,5,7,11整除,也不与偶数39366除以2,3,5,7,11的余数相同的数有:2310*(1/2)*(2/3)*(3/5)*(5/7)*(9/11)=270个,即偶数39366以2310为公差的哥德巴赫数生成线路为270条,在2310内的这270个数又是与2310/2=1155完全对称的,如果全盘进行计算必然重复,故,也可以看成是270/2=135条完整的哥德巴赫数形成线路,而素数生成线路是不会重复的。

而偶数39364的哥德巴赫数生成线路,在2310之内既不能被2,3,5,7,11整除,也不与偶数除以2,3,5,7,11的余数相同的数有:2310*(1/2)*(1/3)*(3/5)*(5/7)*(9/11)=135,为135条线路,只有偶数39366的1/2。区别在于偶数39366能够被素因子3整除,为乘以2/3,偶数39364不能够被素因子3整除,为乘以1/3,即能够整除的素因子x,为乘以(x-1)/x,不能够整除的素因子y,为乘以(y-2)/y,所以,偶数39366的素数对相当于偶数39364的素数对的2倍。

对于“充分大”的偶数的估算:充分大的偶数为500位数,素数对个数,根据《哥德巴赫猜想的初级证明法》中,当偶数大于91时,偶数的素数对个数不低于k(√m)/4,估计当偶数大于500位时,k的值为4*10的10次方,得充分大的偶数的素数对个数不低于260位数,用500位数的偶数除以260位数的数,得充分大的偶数平均240位数个数字中,有一个素数对的存在。如果我们直接进行寻找,相当于大海捞针。

如果,我们按照上面的方法二进行寻找,公差应为496位数,估计素数2*3*5*7*?*1283为496位数,从素数1289到2861之内,有素数除以素因子2,3,5,7,?,1283的余数不与偶数除以这些素因子的余数相同的数存在,存在的这个数可以作为等差数列的首项,2*3*5*7*?*1283的积作为等差数列的公差,取1289项,即1289个数,在这1289个数中,应该有能够组成500位数的偶数的1+1的素数对的素数存在。

难易度分析

寻找“充分大”偶数的一个“1+1”素数对与验证1000位数以上的一个素数相比较,到底哪一个难度小。

人类已经能够寻找并验证1000位数以上的素数,到底人们使用的什么办法,我虽然不知道,但有一点可以肯定:都涉及素数,如果是简单的方法,那么,都是简单方法;如果是笨办法,那么,都用笨办法。我们在这里采用笨办法进行比较:

充分大的偶数指500位数的数,与1000位数的素数相比,相差500位数。1000位数的数开平方为500位数,我们以位数相差一半的数为例进行分析。

100000000与10000相差一半的位数。笨办法是:要验证100000000以上的一个素数,假设要验证的这个数开平方约等于10000,必须要用这个数除以10000之内的素数,不能被这之内所有的素数整除,这个数才是素数。因为,10000内共有素数1229个,即必须做1229个除法题,才能得知这个数是不是素数。说个再笨一点的办法,假设我们不知道10000之内的素数,能否验证100000000以上的这个数是不是素数呢?能,那就是用这个数除以10000内的所有数,不能被这之内所有的数整除,也说明这个数是素数。(之所以说,这两种办法是笨办法,当我们知道10000内的所有素数时,要寻找100000000内的所有素数,不是用除法,而是用乘法,步骤最多只占第一种笨办法的1%,详见本人的《素数的分布》中所说的方法)。

当我们寻找偶数10000的一个素数对,须要多少个运算式?

我们知道:2*3*5*7*11=2310,10000/2310≈4,13/2=6.5,按理说应该取等差数列的7项以上,这里可以取4个项,接近应取数。我们基本上可以使用这个公差。这里的计算为5个计算式,简称5步;

大于11的素数,从13开始,寻找等差数列的首项,我们用(10000-13)分别除以2,3,5,7,11。能被3整除,除到3为止,一个减法,两个除法,为3步;

素数17,(10000-17)分别除以2,3,5,7,11。不能整除,可以用17为等差数列的首项,组成等差数列:17+2310n。为6步;

数列17+2310n在10000内有:17,2327, 4637,6947,9257,为4步;

计算素因子,√10000=100,素因子为100之内的素数,除2,3,5,7,11外,还剩13 ,17 ,19 ,23 ,29,31 ,37 ,41 ,43, 47, 53 ,59 ,61, 67 ,71,73 ,79 ,83, 89, 97,为20个素因子。为1步;

用10000分别除以这20个素因子,把余数记下来。为20步;

用17分别除以这些素因子,当除到67时余数与10000除以67余数相同,为14步; 用2327分别除以这些素因子,当除到13时余数为0,为1步;

用4637分别除以这些素因子,当除到31时余数与10000除以31余数相同,为6步; 用6947分别除以这些素因子,当除到43时余数与10000除以43余数相同,为9步; 用9257分别除以这些素因子,既不能整除,也不与10000除以这些素因子的余数相同,奇数9257必然能组成偶数10000的素数对。为20步。

总计为:102步计算式。而验证100000000以上的一个素数须要1229步计算式相比,结论为:寻找10000的一个素数对比验证100000000以上的一个素数简单。也就是说,寻找一个500位数偶数1+1的素数对,比验证一个1000位数以上的素数容易。

寻找500位数偶数的素数对,因为,2*3*5*7*11*?*1283左右,其乘积为493到496位数,下一个素数可能为1289左右,1289/2=644.5。才能满足取下一个素因子的值的1/2以上个项,当然,能够取到1289个项以上更好,更容易寻找到偶数的素数对。

敬请世界电脑高手验证,充分大的偶数必然有1+1的素数对存在,哥德巴赫猜想必然成立。

四川省三台县工商局:王志成

第四篇:用c语言证明哥德巴赫猜想

用c语言证明哥德巴赫猜想

哥德巴赫猜想:任何一个大于6的偶数都可以写成两个素数的和。 #include <stdio.h>

#include <stdlib.h>

int main(void)

{

int number,a,b;

char c;

int i,j,k,l;

int sum,m;

system("cls");

printf("enter your number:");

scanf("%d",&number);

for (i=2; i<=number; i++)

{

sum=1;

for (j=2; j<i; j++)

{

if (i%j!=0)

{

sum=sum+1;

}

}

if (sum==(i-1))

{

if ((i+1)==number)

{

a=i;

b=1;

printf("%d=%d+%dn",number,a,b);

}

else

{

for (k=2; k<=i; k++)

{

m=1;

for (l=2; l<k; l++)

{

if (k%l!=0)

{

m=m+1;

} } if (m==(k-1)) {if ((i+k)==number&&i!=k){a=i;b=k;printf("%d=%d+%dn",number,a,b);

}

}

}

}

system("pause");

}} }

第五篇:陈景润对哥德巴赫猜想的证明

陈景润对哥德巴赫猜想的证明

这个问题是德国数学家哥德巴赫(c.goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》)

哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。

1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。

到了20世纪20年代,有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少(感谢访问好范文网wWw.HaoWOrD.COm)每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。

1920年,挪威的布朗(brun)证明了 “9+9 ”。

1924年,德国的拉特马赫(rademacher)证明了“7+7 ”。

1932年,英国的埃斯特曼(estermann)证明了 “6+6 ”。

1937年,意大利的蕾西(ricei)先后证明了“5+7 ”, “4+9 ”, “3+15 ”和“2+366 ”。1938年,苏联的布赫 夕太勃(byxwrao)证明了“5+5 ”。

1940年,苏联的布赫 夕太勃(byxwrao)证明了 “4+4 ”。

1948年,匈牙利的瑞尼(renyi)证明了“1+c ”,其中c是一很大的自然数。1956年,中国的王元证明了 “3+4 ”。

1957年,中国的王元先后证明了 “3+3 ”和 “2+3 ”。

1962年,中国的潘承洞和苏联的巴尔巴恩(bapoah)证明了 “1+5 ”, 中国的王元证明了“1+4 ”。

1965年,苏联的布赫 夕太勃(byxwrao)和小维诺格拉多夫(bhhopappb),及 意大利的朋比利(bombieri)证明了“1+3 ”。

1966年,中国的陈景润证明了 “1+2 ”[用通俗的话说,就是大偶数=素数+素数*素数或大偶数=素数+素数(注:组成大偶数的素数不可能是偶素数,只能是奇

数。因为在素数中只有一个偶素数,那就是2。)]。

其中“s + t ”问题是指: s个质数的乘积 与t个质数的乘积之和

20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。

由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。 1966年春,陈景润向世界宣告,他得出了关于哥德巴赫猜想的最好的结果(1+2),即任何一个充分大的偶数,都可以表示成为两个数之和,其中一个是素数,另一个为不超过两个素数的乘积。1966年,第17期《科学通报》上发表了陈景润的论文

(原文200多页,不乏冗杂之处。)

1972年,陈景润改进了古老的筛法,完整优美地证明了哥德巴赫猜想中的(1+2),改进了1966年的论文。

1973年,《中国科学》杂志正式发表了陈景润的论文《大偶数表为一个素数及一个不超过两个素数的乘积之和》。该文和陈景润1966年6月发表在《科学通报》的论文题目是一样的,但内容焕然一新,文章简洁、清晰。

该论文的排版也颇费周折。由于论文中数学公式极多,符号极繁,且很多是多层嵌套,拼排十分困难。科学院印刷厂派资深排版师傅欧光弟操作,整整排了一星期。

所以只贴陈景润先生在论文之开始:

【命p_x(1,2)为适合下列条件的素数p的个数:

x-p=p_1或x-p=(p_2)*(p_3)

其中p_1, p_2 , p_3都是素数。

用x表一充分大的偶数。

命cx={∏p|x,p 2}(p-1)/(p-2){∏p 2}(1-1/(p-1)^2 )

对于任意给定的偶数h及充分大的x,用xh(1,2)表示满足下面条件的素数p的个数:p≤x,p+h=p_1或h+p=(p_2)*(p_3),

其中p_1,p_2,p_3都是素数。

oldbach猜想目前没有证明出来,最好的结果就是陈式定理。陈景润的证明很长,而且非数论专业的人一般不可能读懂。整理过的证明参看

潘承洞,潘承彪 著,《哥德巴赫猜想》,北京:科学出版社,1981。

此书较老,现应已绝版,可在较大的图书馆找到。

教育网中许多ftp都有。公网下载地址:

word该篇DOC格式哥德巴赫猜想证明者(精选多篇)范文,共有10754个字。好范文网为全国范文类知名网站,下载本文稍作修改便可使用,即刻完成写稿任务。立即下载:
哥德巴赫猜想证明者(精选多篇)下载
哥德巴赫猜想证明者(精选多篇).doc
下载Word文档到电脑,方便编辑和打印
编辑推荐: 星级推荐 星级推荐 星级推荐 星级推荐 星级推荐
下载该Word文档
好范文在线客服
  • 问题咨询 QQ
  • 投诉建议 QQ
  • 常见帮助 QQ
  • 13057850505